Emily Delaney

emilydelaney-photoIn spite of a shared genome, males and females can differ dramatically in form, physiology, or behavior. To better understand how the sexes develop different phenotypes from a nearly identical set of genes, my research focuses on the molecular origin of sex-specific gene regulation. I study female-limited color polymorphisms in the Drosophila montium clade and the genetic changes that produce discrete color morphs in females. Characterizing the genetic mechanisms through which sex-specific gene regulation arises will elucidate how sexually dimorphic traits evolve.

Ammoammon_headn Thompson

I am interested in the mode and tempo of transcriptome evolution. Through comparative RNA-seq I am investigating the relative rates of regulatory change, gene duplication, de novo origination, and coding sequence change causing the evolution and turnover of tissue transcriptomes.



Logan Blair

One of the loganmost astounding mechanisms of evolutionary innovation is the ability for functional genes to evolve de novo from “inert” DNA sequence. However, such a change must be accompanied by the regulatory framework to co
ntrol the new gene’s expression. l study whether new regulatory sequence is driving the expression of de novo genes in Drosophila melanogaster.


Giovanna Hanna

The accessogiovanni-hannary glands are secretory organs found in the reproductive system of Drosophila males, and are considered to be functionally equivalent to the human prostate. Only two cell types, the primary and secondary cells, secrete products into the lumen of this organ, which are then transferred to the female during mating. While much is known about the function of these proteins in the female post-mating, little is known about development of these glands in the first place. Currently, I am studying cell fate specification in the accessory glands, and working on projects related to testes function, sex brush/comb evolution, as well as evolution of the female reproductive system.

David Luecke

I am intluecke-headshoterested in the links between molecular evolution and phenotypic evolution.  I study these questions in the speciesDrosophila prolongata, males of which have forelegs with pronounced expansion of chemosensory bristles and a dramatic increase in relative size.  I am investigating the enhancer evolution responsible for gene expression changes that underlie the chemosensory bristle expansion, the gene expression and protein sequence changes of chemoreceptor genes in these bristles, and the cellular processes during development that produce larger relative leg size.


Gavin Rice

website_picture_gavinWhether it is the brightly colored feathers of the male peacock or the horns of male dung beetles, scientists have long been intrigued by sexually dimorphic traits. However, the molecular mechanisms responsible for the origin of these sex specific traits are not well known. I am studying the role of transcription factor doublesex (dsx) in the origin and diversification of the  sex combs of the Drosophila melanogaster and obscura species groups and the sex brush of the Drosophila immigrans species group. I will be joining Mark Rebeiz’s lab for a postdoctoral position in Winter of 2017.

Judy Wexler

wexler-photoAlmost 90 percent of all insect species are holometabolous, meaning they undergo a complete metamorphosis from larvae to pupa to adult. This life history is a derived state — earlier branching insects are hemimetabolous, meaning they undergo only a partial metamorphosis between juvenile and adult forms. I’m interested in using hemimetabolous insects as a developmental biology model to understand how various aspects of holometabolous insects evolved. Specifically, I am studying the sexual differentiation pathway in hemimetablous insects to understand how the genetic regulation of sex evolved in holometabolous insects like the fruit fly, honey bee, and silk worm.